Auditory feature representation using convolutional restricted Boltzmann machine and Teager energy operator for speech recognition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Representation Learning Using Convolutional Restricted Boltzmann Machine for Spoof Speech Detection

Speech Synthesis (SS) and Voice Conversion (VC) presents a genuine risk of attacks for Automatic Speaker Verification (ASV) technology. In this paper, we use our recently proposed unsupervised filterbank learning technique using Convolutional Restricted Boltzmann Machine (ConvRBM) as a frontend feature representation. ConvRBM is trained on training subset of ASV spoof 2015 challenge database. A...

متن کامل

Auditory Teager energy cepstrum coefficients for robust speech recognition

In this paper, a feature extraction algorithm for robust speech recognition is introduced. The feature extraction algorithm is motivated by the human auditory processing and the nonlinear Teager-Kaiser energy operator that estimates the true energy of the source of a resonance. The proposed features are labeled as Teager Energy Cepstrum Coefficients (TECCs). TECCs are computed by first filterin...

متن کامل

Convolutional Restricted Boltzmann Machines for Feature Learning

In this thesis, we present a method for learning problem-specific hierarchical features specialized for vision applications. Recently, a greedy layerwise learning mechanism has been proposed for tuning parameters of fully connected hierarchical networks. This approach views layers of a network as Restricted Boltzmann Machines (RBM), and trains them separately from the bottom layer upwards. We d...

متن کامل

Feature Learning with Gaussian Restricted Boltzmann Machine for Robust Speech Recognition

In this paper, we first present a new variant of Gaussian restricted Boltzmann machine (GRBM) called multivariate Gaussian restricted Boltzmann machine (MGRBM), with its definition and learning algorithm. Then we propose using a learned GRBM or MGRBM to extract better features for robust speech recognition. Our experiments on Aurora2 show that both GRBM-extracted and MGRBM-extracted feature per...

متن کامل

Recognition of stress in speech using wavelet analysis and Teager energy operator

The automatic recognition and classification of speech under stress has applications in behavioural and mental health sciences, human to machine communication and robotics. The majority of recent studies are based on a linear model of the speech signal. In this study, the nonlinear Teager Energy Operator (TEO) analysis was used to derive the classification features. Moreover, the TEO analysis w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Acoustical Society of America

سال: 2017

ISSN: 0001-4966

DOI: 10.1121/1.4983751